• Drano Rauteon

Óptica - Lâmpadas a descarga de baixa pressão com vapor de Mercúrio ou vapor de Sódio

Atualizado: 21 de nov. de 2021


Imagem 1 - Lâmpadas fluorescentes


Nesta sequência de artigos, vamos desbravar as lâmpadas à descarga, que além de estarem presentes em muitas casas pelo mundo, são utilizadas em projetores 3LCD e DLP e também nos displays LCD antigos, além de serem mais eficientes que as velhas lâmpadas incandescentes. Para tal façanha, iremos inicialmente dividir tudo em níveis de abstração, e assim tornar fácil compreender as diferenças muitas vezes ignoradas ou até mesmo enroladas em explicações espalhadas pela internet.


Parte 1

->> Lâmpadas à Descarga:

-> Gás e Plasma;

-> Íons;

-> Condução de elétrons;

-> Vapor Metálico;

-> Raios ultravioleta;

-> Relação entre o gás inerte e o vapor Metálico;

-> O Pó fluorescente.

Parte 2 - Você está neste aqui!

-> Lâmpadas à descarga de baixa pressão com vapor de Mercúrio;

-> Lâmpadas à descarga de baixa pressão com vapor de Sódio.

Parte 3

-> Lâmpadas à descarga de alta pressão com vapor de Mercúrio;

-> Lâmpadas à descarga de alta pressão com vapor de Sódio;

-> Lâmpada mista (incandescente / fluorescente) de vapor de Mercúrio (que dispensa reator).

Parte 4

>> O circuito que faz a lâmpada funcionar:

-> O starter para lâmpadas com vapor de Mercúrio;

-> O ignitor para lâmpadas com vapor de Sódio à alta pressão;

-> reatores de partida rápida;

-> reatores eletrônicos e o inverter.

 

Introdução


Também chamadas de lâmpadas fluorescentes, elas foram as mais populares no Brasil. Estas lâmpadas utilizam vapores metálicos à pressões na ordem de 10^-3 ATM com uma densidade de potência de arco na ordem de 0,5 W/cm à 2 W/cm (watts por centímetro). Os materiais utilizados são o vapor de Mercúrio e vapor de Sódio, sendo o primeiro mais popular no Brasil.

Agora vamos dissertar um pouco sobre as características deste tipo de lâmpada fluorescente.


Eletrodos


Existem duas tecnologias de eletrodo para estas lâmpadas, e ambas são descritas logo abaixo.

Os eletrodos encontram-se hermeticamente selados no interior do tubo, em cada extremidade.

Para que o gás possa conduzir, ele deve ser polarizado, isso já foi dito no Capítulo 1 desta série. Há duas formas de isto acontecer:

-> Lâmpadas CCFL (Cold Cathode Fluorescent Lamp - Lâmpada Fluorescente de Cátodo Frio): não possuem filamento, mas sim um eletrodo cilíndrico recoberto de uma substância que emite elétrons, sendo aquecida pelo calor que gera a descarga de arranque.

Lâmpadas CCFL utilizam um circuito chamado de “Inverter”, que é dotado de um transformador para gerar os pulsos de alta frequência que vão ionizar o gás e o vapor metálico. Estas lâmpadas também possuem uma capsula com diâmetro menor, utilizam muito menos gás (neste modelo é utilizado bastante Neônio ou Argônio), tem uma vida útil muito maior que as lâmpadas de catodo quente e a quantidade de luz emitida pode ser regulada entre um valor mínimo e um máximo. Por todos estes motivos, os displays LCD de TVs e monitores antigos utilizavam as lâmpadas CCFL no backlight.

-> Lâmpadas HCFL (Hot Cathode Fluorescent Lamp - Lâmpada Fluorescente de Cátodo Quente): Possui um filamento que aquece e assim libera elétrons (emissão termiônica). Estes elétrons irão fazer o gás conduzir. Lâmpadas HCFL mais antigas necessitam de um “starter” para poder funcionarem.

Lâmpadas fluorescentes de cátodo quente utilizam filamentos parecidos com os de lâmpadas incandescentes, porém a temperatura normal de operação é mais baixa, na casa dos 800°C a 1100°C.

Os filamentos destas lâmpadas fluorescentes, que podem contar com a adição de Tungstênio, também são revestidos com materiais com baixa função de trabalho, isto é, não tão condutores, como por exemplo o Óxido de Bário.

CURIOSIDADE: Lâmpadas de cátodo quente mais novas não necessitam de “starter”, equipamento utilizado antigamente. O chamado pré-aquecimento ocorre quando a lâmpada é ligada, como foi dito acima, pela passagem de corrente, e assim em questão de pouquíssimo tempo atingem a temperatura normal de operação. O pré-aquecimento influência bastante na vida útil da lâmpada.


CURIOSIDADE: Lâmpadas fluorescentes CCFL de baixa pressão eram amplamente utilizadas pela indústria de televisores LCD até cerca de 10 anos atrás. Elas requerem um inverter para gerar tensões que variam entre 300 e 1300V, bem como frequências entre 40 kHz e 80 kHz, valores que dependiam do projeto do equipamento. Com o avanço da tecnologia, displays LCD CCFL foram substituídos por telas LCD LED. Veja abaixo um backlight de lâmpadas CCFL acesas e sem o difusor de luz:


Imagem 2 - Backlight da TV LCD Samsung LN32D550K7GXZD


Para saber mais sobre o funcionamento de telas LCD CCFL e LCD LED, comece CLICANDO AQUI!

 

Agora, na sequência, os tipos mais comuns de lâmpada fluorescente com Mercúrio vaporizado sob baixa pressão.


Lâmpada Tubular Fluorescente


Desenvolvida em meados de 1940 e conhecida popularmente como "lâmpada tubular fluorescente" em função da geometria tubular de sua estrutura de descarga, este tipo de lâmpada tem aplicações em muitas áreas da iluminação. Como já foi dito, o tubo de descarga é revestido internamente com uma camada de pó popularmente conhecida como Fósforo, que converte um comprimento de radiação especifico na faixa ultravioleta numa luz do espectro visível.

Lâmpadas fluorescentes comerciais comuns utilizam um bulbo de vidro em formato tubular, que historicamente são designados pela letra "T" (de tubular) seguido de um número que indica seu diâmetro máximo em oitavos de polegada. Um tubo T12, por exemplo, significa um bulbo tubular de 12/8 de polegada.

Tabela 1

Com o passar dos anos, as lâmpadas tubulares foram sendo aperfeiçoadas, e aquelas com diâmetro menor passaram a ter maior eficiência do que as maiores, refletindo mais luz dentro do bloco da luminária. Observe a imagem abaixo:

Imagem 2


Lâmpada fluorescente compacta


Esta lâmpada foi introduzida no mercado no início da década de 80 e apresenta alguns detalhes construtivos que a diferenciam das lâmpadas fluorescentes tubulares convencionais, porém, seu princípio de funcionamento é idêntico.

A lâmpada fluorescente compacta é constituída de um tubo de vidro do tipo T4 ou T5, com revestimento de “tri-fósforo” e filamentos nas suas extremidades. Existem diversas formas construtivas para o tubo de descarga, sendo duas as mais comuns:

a) um tubo único curvado em “U”;

b) dois tubos independentes, unidos por uma ponte.

Veja o diagrama de uma lâmpada compacta abaixo:

Lâmpada fluorescente compacta

Diagrama 1

A lâmpada fluorescente compacta, em geral, só apresenta duas conexões elétricas, uma vez que os filamentos encontram-se ligados em série através de um “starter”, o qual fica alojado num invólucro na base da lâmpada. A estabilização da lâmpada é feita através de um reator indutivo, conectado externamente.

Algumas lâmpadas já apresentam um reator incorporado na sua base, que em geral é do tipo rosca Edison, plataforma também utilizada em lâmpadas incandescentes. O reator pode ser indutivo ou eletrônico, sendo este último mais leve, de forma a reduzir o peso do conjunto.

Veja abaixo a imagem de uma placa de uma Lâmpada fluorescente compacta com o chamado "reator eletrônico":

Circuito de uma Lâmpada fluorescente compacta

Imagem 3

Há um filtro EMI para impedir que o ruído gerado no circuito de comutação interna volte para a rede, um transformador, uma ponte retificadora feita de diodos, um filtro com capacitor e um circuito semi-inversor que tem a função de converter o sinal de CC para CA para elevar a frequência para valores superiores a 20 kHz.

Uma frequência alta é necessária para que uma lâmpada fluorescente funcione normalmente. No caso das lâmpadas CCFL utilizadas em televisores LCD antigos, são frequências que vão de 40 kHz a 80 kHz.


Atualmente, as lâmpadas fluorescentes compactas contemplam outras formas populares de bulbo, como é o caso das espirais:

Imagem 4 - lâmpada fluorescente Compacta espiral

 

Comparações e Eficiência


A lâmpada fluorescente compacta foi concebida para substituir a lâmpada incandescente. A tabela abaixo apresenta as características de alguns modelos comerciais de ambos os tipos de lâmpada. Os valores da eficácia luminosa do conjunto lâmpada + reator foram obtidos com um reator indutivo.

Tabela 2

Pela tabela acima, verifica-se que a lâmpada compacta apresenta dimensões físicas similares à incandescente, porém consome um sexto da potência a apresenta uma vida útil 8 vezes maior. Atualmente, o custo de uma lâmpada fluorescente compacta já é baixo e acessível no mesmo nível que as velhas lâmpadas incandescentes.

A lâmpada de Sódio de baixa pressão (LPS - Low Pressure Sodium) foi pouco utilizada no Brasil. Foi desenvolvida na década de 1930 e utiliza um tubo de descarga de vidro boratado em formato de "U", com filamentos nas suas extremidades, contendo vapor de sódio à 7x10-7 atmosferas e um gás de ignição (99% neônio e 1% de argônio) à pressão de 7x10-4 atmosferas.

Para garantir isolamento térmico, o tubo de descarga é inserido sob vácuo no interior de um bulbo de vidro transparente, conforme mostra a figura abaixo:

Lâmpada a vapor de Sódio

Diagrama 2

A lâmpada LPS é a fonte de luz artificial de maior eficácia luminosa (198 lm/W para lâmpadas de 131 W). A sua eficiência é determinada pela temperatura na parede do tubo de descarga. As lâmpadas mais modernas apresentam uma película de Óxido de Índio aplicada sobre a superfície interna do bulbo, que reflete a radiação infravermelha para o tubo de descarga, mantendo a temperatura da parede em 270 °C.

Ao contrário da descarga de Mercúrio de baixa pressão, a radiação pela lâmpada LPS emitida é visível, sendo constituída pelas raias características do Sódio, cujos comprimentos de onda são de 589 nm e 589.6 nm. Estes valores são muito próximos de 555 nm, que corresponde ao valor máximo de sensibilidade do olho Humano. A característica monocromática da luz emitida determina o baixo índice de reprodução de cores (RA igual ou menor que 20).

A tabela abaixo apresenta as características de alguns modelos comerciais:

Tabela 3

As características geométricas (a lâmpada de 131W tem comprimento de 1.1 m), a posição de operação (no máximo 20° em relação à horizontal), o baixo índice de reprodução de cores, o fluxo luminoso e vida útil (20000 horas) elevados tornam esta lâmpada adequada para aplicações onde são necessários níveis de iluminação elevados e os requisitos de qualidade de luz possam ser desprezados.

Em geral são utilizadas na iluminação de túneis e ou em rodovias (como na Holanda e na Bélgica).

Neste artigo você viu sobre lâmpadas fluorescentes tubulares e compactas, além de lâmpadas de vapor de Sódio a baixa pressão. No próximo, veremos sobre as lâmpadas fluorescentes de Mercúrio e Sódio, só que com alta pressão.

Gostou do artigo? Tem alguma sugestão? Então entre em contato conosco pelo hardwarecentrallr@gmail.com.

Lembrando que este artigo foi baseado na mistura de um texto antigo sobre lâmpadas fluorescentes aqui do HC e um PDF da "Escola Politécnica da Universidade de São Paulo - Departamento de Engenharia de Energia e Automação Elétricas" sobre principais tipos de lâmpadas e suas características.

 

FONTES E CRÉDITOS:

Texto: Drano Rauteon; ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO - Departamento de Engenharia de Energia e Automação Elétricas

Imagens: Leonardo Ritter

Fontes: Hardware Central; ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO - Departamento de Engenharia de Energia e Automação Elétricas; VRBrasil; Mundo Educação; Esquadrão do Conhecimento; novaeletronica.com.


Última atualização: 18 de Novembro de 2021.

341 visualizações